

Estatística I

Licenciatura em Gestão e Licenciatura em Finanças 2.º Ano/2.º Semestre 2023/2024

Aula Teórica N.º 12 (Semana 7)

Docente: Elisabete Fernandes

E-mail: efernandes@iseg.ulisboa.pt

Conteúdos Programáticos

Aulas Teóricas (Semanas 1 a 3)

• Capítulo 2: Probabilidades Aulas Teóricas (Semanas 3 a 5)

 Capítulo 3: Variáveis Aleatórias Unidimensionais Aulas Teóricas (Semanas 5 a 7)

 Capítulo 4: Variáveis Aleatórias Multidimensionais Aulas Teóricas (Semanas 8 a 13)

•Capítulo 5: Distribuições Teóricas

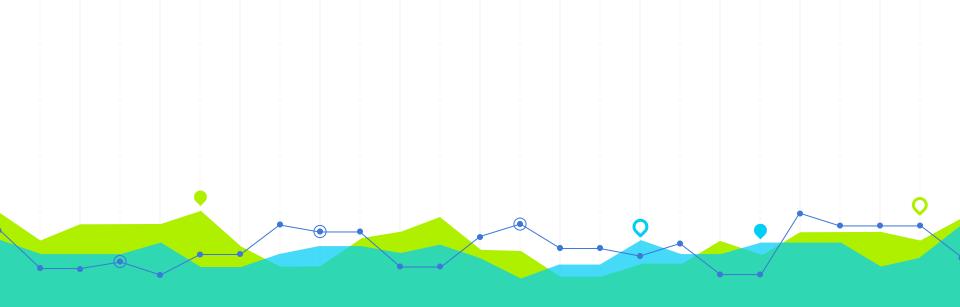
Capítulo 6:
 Amostragem.
 Distribuições por Amostragem.

Material didático: Exercícios do Livro Murteira et al (2015), Formulário e Tabelas Estatísticas

Bibliografia: B. Murteira, C. Silva Ribeiro, J. Andrade e Silva, C. Pimenta e F. Pimenta; *Introdução à Estatística*, 2ª ed., Escolar Editora, 2015.

https://cas.iseg.ulisboa.pt

Aula 9	Coeficiente de assimetria e coeficiente de kurtosis. Exemplo. Quantil de ordem alfa para distribuições contínuas. Mediana como medida de localização, amplitude inter-quartis como medida de dispersão. Exemplo.
Aula 10	Início do capítulo 3: Variáveis aleatórias bidimensionais. Função de distribuição conjunta, propriedades. Funções de distribuição marginais. Independência de variáveis aleatórias. Variáveis aleatórias bidimensionais discretas. Função probabilidade conjunta.
	Propriedades. Função probabilidade marginal. Exemplo.
Aula 11	Variáveis bidimensionais discretas: independência. Variáveis bidimensionais contínuas: função densidade conjunta e funções densidade marginais. Independência. Função probabilidade condicionada. Propriedades. Exemplo.
Aula 12	Função densidade. Função densidade de probabilidade condicionada. Propriedades. Exemplo.



Pares Aleatórios Contínuos: Exercícios

Distribuição Conjunta, Marginais e Condicionais; Independência; Covariância e Correlação **5.13** Considere a variável aleatória bidimensional contínua (X, Y) com função densidade de probabilidade conjunta:

$$f_{X,Y}(x,y) = \begin{cases} 2 & \text{, } 0 < x < y < 1 \\ 0 & \text{, caso contrário} \end{cases}$$

- (a) Calcule o coeficiente de correlação entre X e Y.
- (b) Calcule a V(X|Y = y).
- (c) Verifique que E(X) = E[E(X|Y)].

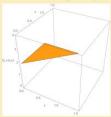
Exercício 5.13 (a): Coeficiente de Correlação entre X e Y

- Par aleatório (X, Y)
- F.d.p. conjunta

$$f_{X,Y}(x,y) = \begin{cases} 2, & 0 < x < y < 1 \\ 0, & \text{caso contrário.} \end{cases}$$

• Contradomínio de (X, Y), $\mathbb{R}_{X,Y}$

• Gráfico da f.d.p. conjunta de (X, Y)



• Correlação entre X e Y

Uma vez que se pretende calcular

$$\begin{aligned} corr(X,Y) &= \frac{cov(X,Y)}{\sqrt{V(X) \times V(Y)}} \\ &= \frac{E(X\,Y) - E(X) \times E(Y)}{\sqrt{[E(X^2) - E^2(X)] \times [E(Y^2) - E^2(Y)]}} \end{aligned}$$

é necessário calcular diversos momentos...

• Valor esperado, 20. momento e variância de X

$$E(X) = \int_{-\infty}^{+\infty} x \times f_X(x) dx$$

$$= \int_{-\infty}^{+\infty} x \times \left[\int_{-\infty}^{+\infty} f_{X,Y}(x, y) dy \right] dx$$

$$= \int_{0}^{1} x \times \left[\int_{x}^{1} 2 dy \right] dx$$

$$= \int_{0}^{1} x \times \left[(2y) \Big|_{x}^{1} \right] dx$$

$$= \int_{0}^{1} x \times 2(1 - x) dx$$

$$= \left(x^2 - \frac{2x^3}{3} \right) \Big|_{0}^{1}$$

$$= \frac{1}{\pi}$$

$$[f_X(x) = 2(1-x), \quad 0 < x < 1]$$

Exercício 5.13 (a): Coeficiente de Correlação entre X e Y

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} \times f_{X}(x) dx$$

$$= \int_{0}^{1} x^{2} \times 2(1-x) dx$$

$$= \left(\frac{2x^{3}}{3} - \frac{2x^{4}}{4}\right)\Big|_{0}^{1}$$

$$= \frac{1}{6}$$

$$V(X) = E(X^{2}) - E^{2}(X)$$

$$= \frac{1}{6} - \left(\frac{1}{3}\right)^{2}$$

$$= \frac{1}{18}$$

$$E(Y) = \int_{-\infty}^{+\infty} y \times f_Y(y) \, dy$$

$$= \int_{-\infty}^{+\infty} y \times \left[\int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dx \right] \, dy$$

$$= \int_{0}^{1} y \times \left[\int_{0}^{y} 2 \, dx \right] \, dy$$

$$= \int_{0}^{1} y \times 2y \, dy$$

$$= \left[\left(\frac{2y^3}{3} \right) \right]_{0}^{1}$$

$$= \frac{2}{3}$$

$$E(Y^2) = \int_{-\infty}^{+\infty} y^2 \times f_Y(y) \, dy$$

$$= \left[\left(\frac{2x^4}{4} \right) \right]_{0}^{1}$$

$$= \frac{1}{2}$$

$$V(Y) = E(Y^2) - E^2(Y)$$

$$= \frac{1}{2} - \left(\frac{2}{3} \right)^2$$

Slides Professora Sofia Naique

Exercício 5.13 (a): Coeficiente de Correlação entre X e Y

• Valor esperado de XY

$$E(XY) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \, y \times f_{X,Y}(x,y) \, dy \, dx$$

$$= \int_{0}^{1} \int_{x}^{1} x \, y \times 2 \, dy \, dx$$

$$= \int_{0}^{1} x \left(\int_{x}^{1} 2y \, dy \right) dx$$

$$= \int_{0}^{1} x \left(y^{2} \Big|_{x}^{1} \right) dx$$

$$= \int_{0}^{1} x (1 - x^{2}) \, dx$$

$$E(XY) = \left(\frac{x^2}{1} - \frac{x^4}{4}\right)\Big|_x^1$$
$$= \frac{1}{4}$$

• Covariância entre $X \in Y$

$$cov(X,Y) = E(XY) - E(X) \times E(Y)$$
$$= \frac{1}{4} - \frac{1}{3} \times \frac{2}{3}$$
$$= \frac{1}{36}$$

· Correlação pedida

$$corr(X,Y) = \frac{cov(X,Y)}{\sqrt{V(X) \times V(Y)}}$$
$$= \frac{\frac{1}{36}}{\sqrt{\frac{1}{18} \times \frac{1}{18}}}$$
$$= \frac{1}{2}.$$

- [Obs.
 - ∘ $corr(X, Y) = 0.5 \neq 0$ logo X e Y são v.a. DEPENDENTES.
 - $\circ corr(X, Y) = 0.5 > 0$ donde X e Y tenderão a variar no mesmo sentido.
 - O valor de |corr(X, Y)| = 0.5 está relativamente afastado de 1 donde se possa adiantar que as v.a. X
 e Y não estão correlacionadas linearmente.]

Exercício 5.13 (b): Variância Condicional

• F.d.p. de
$$X$$
 condicional a $Y = y$

$$f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$= \begin{cases} \frac{2}{2y} = \frac{1}{y}, & 0 < x < y \\ 0, & \text{caso contrário,} \end{cases}$$
onde y é uma constante no intervalo $(0,1)$.

• Variância de X condicional a Y = y

$$\begin{split} V(X \mid Y = y) &= E(X^2 \mid Y = y) - E^2(X \mid Y = y) \\ &= \left[\int_{-\infty}^{+\infty} x^2 \times f_{X \mid Y = y}(x) \, dx \right] - \left[\int_{-\infty}^{+\infty} x \times f_{X \mid Y = y}(x) \, dx \right]^2 \\ &= \left[\int_{0}^{y} x^2 \times \frac{1}{y} \, dx \right] - \left[\int_{0}^{y} x \times \frac{1}{y} \, dx \right]^2 \\ &= \frac{1}{y} \times \left(\frac{x^3}{3} \right) \Big|_{0}^{y} - \left[\frac{1}{y} \times \left(\frac{x^2}{2} \right) \right]_{0}^{y} \right]^2 \\ &= \frac{y^2}{3} - \left(\frac{y}{2} \right)^2 \\ &= \frac{y^2}{12}, \quad 0 < y < 1. \end{split}$$

Exercício 5.13 (c): E(X) = E(E(X|Y))

Verifique que E(X) = E[E(X|Y)].

· V.a. de interesse

 $E(X \mid Y)$ é uma v.a. que toma valores

$$E(X \mid Y = y) \stackrel{(b)}{=} \frac{y}{2}, \quad 0 < y < 1$$
 com densidade $f_Y(y)$. Assim,

 $E[E(X|Y)] = \int_0^1 \frac{y}{2} \times f_Y(y) \, dy$ $\stackrel{(a)}{=} \int_0^1 \frac{y}{2} \times 2y \, dy$ $= \left(\frac{y^3}{3}\right)\Big|_0^1$ $= \frac{1}{3}$ $\stackrel{(a)}{=} E(X).$

• [Obs.

E[E(X|Y)] = E(X) para qualquer par aleatório (X, Y)...

Obrigada!

Questões?